Lecture 18-19 on Nov. 25 2013

These two lectures are devoted to studying the integral
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where 7 is a simple curve enclosing the region 2. The readers are referred to the figure 1 in the pdf file the
graph of lecture 18-19. In fact when f(z) = z, we know that this integral gives us the so called index of 0
with respect to the curve ~. Since our curve ~y is simple, the index is either 1 or —1 for all points in 2. In
the following arguments, we always assume that  is positively oriented so that the index of all points inside
Q equal to 1 with respect to the curve . We also assume that f(z) in the study is not a constant function
and moreover f # 0 on the curve . With this assumption, we know that f(z) can be factorized by

f(2) = (2 = 21)(2 = 22)..(z = 2n)9(2), (0.1)

where ¢(z) is analytic in  and g(z) # 0 for all z in . From (0.1), we see that 21, ...z, are n zeros of
f- According to Theorem 0.7 in lecture note 17, we know that f can have only finitely many zeros in €.
Therefore by removability of singularity theorem, one can easily show that (0.1) holds.

By (0.1), we calculate
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Therefore by the definition of index and Cauchy-Gousat theorem, one can easily show that

%/ ! (Z)) dz =n(z21,7) + ... +n(zn,7) =1+ ...+ 1 =n.

Therefore if v is positively oriented,
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We can make two generalizations of (0.2).

dz = Total number of zeros of f in Q. (0.2)

First Generalization: Assume F(z) = f(z) — a where a is a complex number so that f # a on 7.
By (0.2), we have
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Clearly the zeors of F' in € are all solutions of the equation f = a in (2. Therefore we have

o / G = Total number of solutions of the equation f = a in Q. (0.3)
T

Second Generalization: Assume

where F'(z) and G(z) are two analytic functions in ). Suppose that both F' and G have no zeros on 7. By
trivial calcuations, we know that




Applying (0.2), we show that
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Now we are going to explore some applications of these two generalizations.

= (Total number of zeros of F' in Q) — (Total number of zeros of G in Q). (0.4)

Application of the First Generalization. Assume f(z9) = a where zp is a point in . By the iso-
lation of zeros, we can shrink + a little bit so that in € there is only one solution of the equation f(z) = a.
That is zg. Therefore we know by (0.3) that
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Must the right-hand side of the above equality equal to 1 since we have only one solution of f = a in Q 7
Let us take a look at the Taylor expansion of f near zg. By Taylor expansion, we know that

(z = 20)" + grt1(2) (2 — 20)*+.

f(2) = f(z0) + f'(20)(z = 20) + ... +

Since we assume that f is not a constant, there must be a k so that for all ¢ < k and ¢ > 0, the derivatives
FD(20) = 0 but f*)(20) # 0. Therefore it holds

(k) (4
f(z) = f(z0) + (2 — Zo)k (ka('O) + grr1(z — zo)>
Set
(k)(zo)

—— t gr1(z — 20).
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clearly when z is close to zg, hgt1(z) # 0. Therefore we know that
f(z) —a=(z—20)" his1. (0.5)

Moreover

f'(z) _ k +h;€+1
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Now if we require + is sufficiently close to zy, then
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This k could be different from 1 since from (0.5), even though we have just one solution of f = a, but this

solution zg could be repeated by k times. In the future, we call k the multicity of zg with respect to the
equation f = a. With the above arguments, we know that
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counts the total number of solutions of f = a. Repeated solutions will also be counted.

Now we fix v sufficiently close to zg so that 2y is the isolated solution of the equation f = a. If we assume
b sufficiently close to a, then clearly
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is sufficiently close to
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But these two numbers are all integers. So we know that
1 I 1 il . . .
— = — , provided that b is sufficiently close to a. (0.6)
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With (0.6), we can prove the following maximum mudulus theorem

Theorem 0.1 (Maximum Modulus Theorem). If f is not a constant function on Q, then the mazimum
value of | f(z)| can only be attained on the boundary of Q1. That is .

Proof. Choose zp in © and assume |f(zp)| attains the maximum value of |f(z)| in Q. Clearly

f(z0) # 0.
otherwise, f(z) =0 for all z in Q. Using Taylor expansion, we know that
f(2) = f(z0) + (2 = 20)*9(2), (0.7)

where g(z) # 0 in |z — zp| < e. Here € is a small positive constant. The equation
(2 = 20)°g(2) = 0
has k repeated solutions in |z — 29| < e. Therefore by (0.6), we know that
(2 = 20)*g(2) = 6f(20),

also has k solutions in |z — 2| < e. Here § is a positive number sufficiently small. Fixing z, in |z — 2| < €
so that (2. — 20)%g(2.) = 0f(20). Therefore we know by (0.7) that

F(22) = f(20) + (2 — 20)"9(2.) = f(20) + 6f(20) = (1 +6)f (=0).

therefore we know that |f(z.)| = (1 + 9)|f(z0)| > |f(20)]. A contradiction. So the maximum modulus of f
can never be attained in Q if f is not a constant. O

Now we see how to apply Theorem 0.1.

Example 1. The lemma of Schwartz.

Proposition 0.2. Assume f is analytic in |z| < 1. |f(2)| <1 for all z in |z| < 1. Furthermore we suppose
that f(0) = 0. Then with the above assumption, it holds

lf(2)] < zl, for all z in |z| < 1.
If | f(24)] = |2«| for some z. in |z| < 1, then f(z) = cz for all z in |z| < 1. Here c is a constant with |c| = 1.
Proof. Step 1. define g(z) = f(z)/z. This function is analytic in 0 < |z| < 1. By Removability of singularity,

we know that g is analytic in |z| < 1;

Step 2. Choosing an arbitrary r < 1 and apply the maximum modulus theorem to g with the Q = {|z| < r}.

Clearly we know that
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— 1, asr — 1.

This shows that |f(z)] < |z];

Step 3. If there is z, so that |f(z.)| = |z«| , then by Theorem 0.1, f(z)/z must be a constant. There-
fore f(z) = cz. clearly |c| = 1 since |f(z4)] = |2«]- O



Application of the Second Generalization. To apply the second generalization, we need take a close
look at the integral
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Assume z(t) is one parametrization of vy with ¢ defined on [a,b]. Then
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In the second inequality, the chain rule is applied. Assume w(t) = f(z(t)). Therefore the above integral can
be rewritten as

1 ! 1 [Pw 1 1
—,/f(z)dz:—, Wl g L = dw = n(0,1).
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Combing the above calculations with (0.4), we know that
Proposition 0.3 (Argument Principle). if f = F/G, then
n(0,T") = (Total number of zeros of F' in Q) — (Total number of zeros of G in Q).

Here T' = f(v).
Proposition 0.3 has a straightforward corollary.
Theorem 0.4 (Rouche’s theorem). If |g— f| < |f| on v, then f and g have the same number of zeros in S).

Proof. Clearly by the above assume f # 0 on v and moreover g # 0 on v too. Consider g/f. By Proposition
0.3, we know that

n(0, (g/f)(v)) = (Total number of zeros of g in Q) — (Total number of zeros of f in Q). (0.8)
According to our assumption,
1(9/f)(z) — 1] <1, for all z on ~.

In other words, (g/f)(7) is inside the ball |w — 1| < 1. But 0 is not in this ball, therefore we conclude that
n(0,I") = 0. This implies that

(Total number of zeros of ¢ in ) = (Total number of zeros of f in Q).

Example 2. How many roots of g(z) = 2% — 825 + 23 + 22 + 2 lie inside the unit disk |z| < 1.
Solution: Letting f(z) = —82%, we know that
l9(2) = f(2)| = 12° +2° + 27 + 2 < 5, on |z = 1.
But |f| =8 on |z| = 1. Therefore we have |g — f| < |f] on |z] = 1. By Rouche’s theorem, there are 6 roots

of g inside |z| < 1 since f(z) = 0 has six roots in |z| < 1. Notice here f in fact has six repeated roots. The
multicity has to be counted.

Example 3. How many roots of the polynomial g(z) = 2% + 322 + 82 + 2 lie on the right-half plane.



Solution: Construct the contour yg by the following way. The first part of vz contains all points on
the pure imaginary line between —Ri and Ri. The second part contains all points on the right-half of the
circle |z| = R. We choose positive orientation of vz and denote by I the set of points on the first part. and
1T the set of points on the second part. The readers are referred to the figure 2 in the graph file. By the
argument principle in Proposition 0.3, we know that the total number of zeros of g equals to n(0, g(vr))
when R is large enough.

the image of I under the mapping ¢g. Assume [ is parametrized by ti where ¢ is the parameter
from R to —R. Plugging into g, we know that

g(ti) = (t — 1)(t + 1) (t — V2)(t + V2) + 8ti.

The image of I under the mapping ¢ is shown in figure 3. Clearly the total change of arguments equals to

S8R
_Zamtan((R—l)(R+1)(R+\/§)(R—\/§)> — 0, as R — oo.

Therefore while R is large enough, the change of arguments on part I is very small.

the image of I under the mapping g.  Assume I] is parametrizaed by Re'® where @ runs from
—m/2 to m/2. Therefore

g(Re) = R*e? + 3R*¢™ + 8Re™ + 2= R* (¢ + 3R 2e?? + 8R 3¢ + 2R7*) .

Noting that ¢’ + 3R™2e"2? + 8R™3¢ + 2R~ is a small perturbation of e*? while R — oco. Therefore the
total change of argument from part I1 equals to 47 while R — oco. Therefore the total change of argument
along g(yr) equals to 47 while R — oo. The index n(0, g(yr)) = 47/2m = 2 while R is large enough. So
there are 2 roots of g on the right-half plane.



